
In diesem Spickzettel verwendete Datensätze

airbnb_angebot

airbnb_id stadt land zimmer jahr_gelistet

1 Wien Österreich 5 2018

2 Luzern Schweiz 2 2017

3 München Deutschland 4 2022

4 Berlin Deutschland 3 2021

gastgeber_angebot

gastgeber_id name airbnb_id anz_bewertung

1 Anna Gruber 1 34

2 Reto Meier 2 55

3 Michael Weber 3 7

4 Emma Schmidt 5 12

Operatoren
R verfügt über eine Vielzahl an Operatoren. Mit arithme-
tischen Operatoren können Sie Rechenoperationen wie
Addition und Multiplikation durchführen. Relationale
Operatoren werden verwendet, um Werte miteinander
zu vergleichen. Logische Operatoren werden für boole-
sche Operationen verwendet.

Arithmetische Operatoren
a + b	 # Summieren zweier Variablen
a – b	 # Subtrahieren zweier Variablen
a * b	 # Multiplizieren zweier Variablen
a / b	 # Dividieren zweier Variablen
a ̂  b	 # Potenzieren einer Variablen
a%%b	 # Rest einer Variablen
a%/%b	 # Ganzzahlige Division von Variablen

Relationale Operatoren
a == b	 # Test auf Gleichheit
a != b	 # Test auf Ungleichheit
a > b	 # Test auf grösser als
a < b	 # Test auf weniger als
a >= b	 # Test auf grösser oder gleich
a <= b	 # Test auf kleiner oder gleich

Logische Operatoren
!	 # Logisch NICHT (NOT)
&	 # Elementweise logisches UND (AND)
&&	# Logisch UND (AND)
|	 # Elementweise logisches ODER (OR)
| |	 # Logisch ODER (OR)

Zuweisungsoperator
x <- 1	 # Weist x eine Variable zu

Andere Operatoren
%in%	 # Identifiziert, ob ein Element zu einem Vektor
		 gehört
$		 # Ermöglicht den Zugriff auf Objekte innerhalb
		 eines Objekts
%>%	 # Pipe, dient zur Übergabe von Objekten an
		 Funktionen

Daten umwandeln
Grundlegende Spaltenoperationen
Auswahl einer oder mehrerer Spalten mit select( )
airbnb_angebot %>%
 select(airbnb_id, stadt)

Spalten anhand von Startzeichen auswählen
airbnb_angebot %>%
 select(starts_with("s"))

Spalten anhand von Endzeichen auswählen
airbnb_angebot %>%
 select(ends_with("t"))

Alle Spalten ausser einer auswählen (z.B. airbnb_id)
airbnb_angebot %>%
 select(-airbnb_id)

Alle Spalten innerhalb eines Bereichs auswählen
airbnb_angebot %>%
 select(land:jahr_gelistet)

Spaltenwerte als Vektor extrahieren (nach Name
oder Index)
airbnb_angebot %>%
 pull(jahr_gelistet)

Spalten neu anordnen mit relocate( )
airbnb_angebot %>%
 relocate(stadt, land)

Spalte an die letzte Position verschieben
airbnb_angebot %>%
 relocate(stadt, .after = last_col( ))

Spalte umbenennen mit rename( )
airbnb_angebot %>%
 rename(jahr = jahr_gelistet)

Spalten wählen, die regulärem Ausdruck entsprechen
airbnb_angebot %>%
 select(matches("(.a.)|(a.)"))

Neue Spalten erstellen
Spalte zeit_am_markt erstellen, welche die Differenz
von aktuellem Jahr und jahr_gelistet enthält
airbnb_angebot %>%
 mutate(zeit_am_markt = 2024 - jahr_gelistet)

Spalte «adresse_vollständig» durch Kombination von
Stadt und Land erstellen
airbnb_angebot %>%
 transmute(adr_vollständig = paste(stadt, land))

Anzahl der Beobachtungen für eine Spalte addieren
(z.B. Anzahl der Inserate pro Land)
airbnb_angebot %>%
 add_count(land)

Arbeiten mit Zeilen
Zeilen nach einer Bedingung filtern (z.B. Land)
airbnb_angebot %>%
 filter(land == "Schweiz")

Datenbearbeitung mit dplyr in R datenpfad.ch

›

›

›

›

›

Zeilen nach zwei ODER mehr Bedingungen filtern
airbnb_angebot %>%
 filter(land == "Schweiz" | zimmer > 3)

Zeilen nach zwei UND mehr Bedingungen filtern
airbnb_angebot %>%
 filter(land == "Schweiz" & zimmer < 3)

Filtern, indem geprüft wird, ob ein Wert in einer
anderen Gruppe von Werten vorhanden ist
airbnb_angebot %>%
 filter(land %in% c("Österreich", "Deutschland"))

Zeilen nach Zeilenindex filtern (z.B. erste 2 Zeilen)
airbnb_angebot %>%
 slice(1:2)

Zeilen mit den höchsten Werten auswählen
airbnb_angebot %>%
 slice_max(zimmer, prop = 0.35)

Zeilen nach Spaltenwerten aufsteigend sortieren
airbnb_angebot %>%
 arrange(zimmer)

Zeilen nach Spaltenwerten absteigend sortieren
airbnb_angebot %>%
 arrange(desc(stadt))

Doppelte Zeilen im gesamten Datensatz entfernen
airbnb_angebot %>%
 distinct( )

Eindeutige Werte in der Spalte Land finden
airbnb_angebot %>%
 distinct(land)

Zeilen basierend auf den Top-n-Werten einer Spalte
auswählen
airbnb_angebot %>%
 top_n(3, zimmer)

Datenaggregation
Gruppen innerhalb einer Spalte zählen
airbnb_angebot %>%
 count(stadt)

Gruppen innerhalb einer Spalte zählen und sortiert
zurückgeben
airbnb_angebot %>%
 count(land, sort = TRUE)

Summenwerte einer Spalte zurückgeben (z.B. Gesamt-
zahl der Zimmer)
airbnb_angebot %>%
 summarise(total_zimmer = sum(zimmer))

Rückgabe des Mittelwertes einer Spalte (z.B. durch-
schnittliche Anzahl der Zimmer)
airbnb_angebot %>%
 summarise(avg_zimmer = mean(zimmer))

Rückgabe einer benutzerdefinierten zusammen
fassenden Statistik
airbnb_angebot %>%
 summarise(avg_gelistet = 2024 - mean(jahr_gelistet))

Nach einer Variablen gruppieren und die Anzahl pro
Gruppe zurückgeben
airbnb_angebot %>%
 group_by(land) %>%
 summarise(n = n( ))

Nach einer Variablen gruppieren und den Mittelwert
pro Gruppe zurückgeben
airbnb_angebot %>%
 group_by(stadt) %>%
 summarise(avg_zimmer = mean(zimmer))

Tabellen verbinden
Inner Join: Gibt nur Datensätze zurück, bei denen ein
Verbindungsfeld in beiden Tabellen übereinstimmt
airbnb_angebot %>%
inner_join(gastgeber_angebot, by = "airbnb_id")

Left Join: Gibt die Zeilen der linken Tabelle und die feh-
lenden Werte für alle Spalten der rechten Tabelle zurück,
für die das Verbindungsfeld keine Entsprechung findet
airbnb_angebot %>%
left_join(gastgeber_angebot, by = "airbnb_id")

Right Join: Gibt die Zeilen der rechten Tabelle und die
fehlenden Werte für alle Spalten der linken Tabelle zu-
rück, für die das Verbindungsfeld keine Entsprechung
findet
airbnb_angebot %>%
right_join(gastgeber_angebot, by = "airbnb_id")

Full Join: Gibt alle Datensätze aus beiden Tabellen zu-
rück, unabhängig davon, ob es eine Übereinstimmung
für das Verbindungsfeld gibt
airbnb_angebot %>%
full_join(gastgeber_angebot, by = "airbnb_id")

Anti Join: Gibt Datensätze aus der ersten Tabelle zurück
und schliesst übereinstimmende Werte aus der zweiten
Tabelle aus
airbnb_angebot %>%
anti_join(gastgeber_angebot, by = "airbnb_id")

Tabellen kombinieren
Tabelle rechts (horizontal) an eine andere anhängen
bind_cols(df_1, df_2)

Tabelle unten (senkrecht) an eine andere anhängen
bind_rows(df_1, df_2)

Kombinieren von Zeilen, die in beiden Tabellen vor
handen sind, und Löschen von Duplikaten
union(df_1, df_2)

Identische Spalten in beiden Tabellen finden
intersect(df_1, df_2)

Zeilen finden, die in einer anderen Tabelle nicht vor-
handen sind
setdiff(df_1, df_2)

›

›

›

›

›

›

›

››

